- g UCRL- 88295
mTTET ITIAN CORY PREPRINT

d L. . v
el 0y R LLL

s WEHEKS

EXPERIENCE WITH A HIGH ORDER PROGRAMMING
LANGUAGE ON THE DEVELOPMENT OF
THE NOVA DISTRIBUTED CONTROL SYSTEM*

G. J. SUSKI
F. W. HOLLOWAY
J. M. DUFFY

This paper was prepared for submittal to
5th IFAC Workshop on Distributed

Computer Control Systems
Transvaal, Africa
May 18-20, 1983

May 10, 1983

This is a preprint of a paper intended for publication in & journal or proceedings. Since
changes may be made before publication, this preprint is made avallsble with the un-
derstanding that ik will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial products. process, or service
by trade name, trademark. manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government thereof, and shall not he used for advertising or product en-
dorsement purposes. ' .

EXPERIENCE WITH A HIGH ORDER PROGRAMMING LANGUAGE ON THE DEVELOPMENT OF
THE NOVA DISTRIBUTED CONTROL SYSTEM*

G. J. Suski, F. W. Holloway, J. M. Duffy

Lawrence Livermore National Laboratory, University of California,
P. 0. Box 5508, L-492, Livermore, California 94550 (USA) PH(415) 422-5917

Abstract. Interest in the impact of high order languages (HOL) on real
process control applications development has intensified

recently, due in part to the Ada language (Ichbiah, 1979) development
effort sponsored by the U.S. Department of Defense. High order
languages, such as Ada, incorporate state-of-the-art features in the
areas of modularity, data abstraction, separate module compilation,
strong type checking of data, multi-tasking, distributed processing and
exception handling. The intent of such languages is to improve
programmer productivity, software maintainability, and the effective
management of software development in large real time systems.

This paper explores the impact of an HOL on the development of the
distributed computer control system for the Nova laser fusion facility
(Simmons, 1982). As the world's most powerful glass laser, Nova will
generate 150 trillion watt pulses of infrared light focused onto fusion
targets a few millimeters in diameter. It will perform experiments
designed to explore the feasibility of fusion as an energy source of the
future. Nova will utilize fifty microcomputers and four VAX-11/780's in
a distributed process control computer system architecture (Suski, 1982).

Praxis, a high level real time computer language, was designed and
implemented for Nova to support the control system development activity
(Evans, 1981). Its design is derived from a communications oriented
language (COL) which was designed during the period of the early
proposals in the Ada language specification process. Praxis is similar
to Ada in its design goals, has many features camparabie to those found
in Ada, and has had operational compilers for over two years.

The purpose of this paper is to assist readers who are beginning to
evaluate the importance of HOL's in small to medium scale process control
applications. The article begins with a summary of our own application
in order to assist readers in applying our experiences to their
situations. The history, status and issues relevant to Ada are discussed

followed by a brief description of the Praxis development effort. A
summary of the major design objectives and features of these HOL's is
followed by a description of our experiences with Praxis. Statistics as
to the actual utilization of such features are included. The conclusion
of this article presents our preliminary expectations and concerns for
the use of Ada within process control applications, based upon Praxis
experience.

*Work performed under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under Contract No.

W-7405-ENG-48.

Introduction. Some experts maintain that the dominant programming
Tanguage of the next decade is destined to be Ada (Carlson, 1981).
However the compilers for this language are just now becoming available.
The culmination of an eight year effort led by the U.S. Department of
Defense, Ada is specifically targeted as a High Order Language (HOL) to
meet the requirements of program development and maintenance for embedded
real-time control systems. The language offers new and often complex
features which are unfamiliar and difficult to evaluate without actual

use.

At Lawrence Livermore National Laboratory, a language named Praxis was
developed to support the development of software for a fifty computer
process control network. This language is similar to ADA in many of its
design goals and features. The purpose of this article is to present our
experience with Praxis, as a HOL, and our resulting expectations and
concerns for Ada in process control applications.

Nova's Distributed Computer Based Control System. The application for
which our Praxis-based distributed computer control system was developed
is named Nova. It is a 150 terawatt (TW), ten arm laser fusion research
facility currently under construction at the Lawrence Livermore National
Laboratory (LLNL) (Simmons, 1982)(Fig. 1). As the world's most powerful
glass laser system, Nova will provide researchers with an important new
tool in the study of inertial confinement fusion (ICF). A principal
objective of Nova is to demonstrate the feasibility of generating power
from controlled thermonuclear reactions.

An intermediate laser system called Novette (Manes, 1983) utilizing
Nova's computer based control system technology, was recently completed
at LLNL. Novette utilizes two beams to provide 30 TW of light onto
fusion targets. It provides important data on laser operation and target
performance in preparation for the Nova experiments, and has proven the
Nova control system design.

The Nova system's ten laser beams will be capablie of concentrating 100 to
150 kilojoules (kJ) in 3 nanosecond pulses of infrared light onto a
fusion target a few millimeters (mm) wide. The system also will generate
light at shorter pulse lengths in power bursts up to 150 TW. Nova will
also generate green and near ultraviolet 1ight by doubling and tripling
the fundamental output wavelength of its amplifiers using passive crystal

technology.

A1l ten arms of Nova must deliver their individual pulses to the target
simultaneously (within + 5 picoseconds). To achieve this objective, a
single 100 microjoule pulse is selected and amplified to approximately 50
joules in a single pass through a nine stage preamplifier. It is then
split by partially reflecting mirrors into ten parallel chains of power
amplifiers, each consisting of fifteen cascaded laser amplifiers. Each
pulse emerges from the output of its 180 meter long chain with a beam
diameter of 74 centimeters. The pulses are subsequently reflected by
large alignment mirrors, converted to shorter wavelengths, and finally
focused onto a fusion target inside a 5 meter diameter aluminum vacuum

vessel,

Functional Organization. Nova's control system employs a distributed,
computer based architecture which evolved from the successful Shiva laser
control system (Suski, 1979). It is organized functionally according to
four fundamental subsystems; Power Conditioning, Laser Alignment, Laser
Diagnostics, and Target Diagnostics. A fifth, unifying subsystem called
Central Controls centralizes, augments, and coordinates the other
subsystems' functions (Fig. 2). Criteria of reljabi]ity and adaptability
are met by the computer based, extendable nature of the system.
Flexibility required to optim%ze individual subsystem architectures is
provided by the inclusion of the Central Control subsystem. This
subsystem establishes a single point at which compatible interfaces for
command, control, and data interactions are established. This
architecture supports parallel software development in the five distinct

areas, with minimal interaction required between groups.

In this hierarchically structured system, approximately fifty Digital
Equipment Corporation (DEC) LSI-11/23 microcomputers provide localized
control and data acquisition capabilities in geographically distributed
locations throughout the laser fusion facility. Data from these front
end processors (FEP's) is collected, analyzed and integrated at the
Central Control Tevel with three redundant Digital Equipment Corporation
VAX-11/780's minicomputers. Remote command and control capabilities,
higher level control functions (e.g., automatic laser alignment), and
high volume data storage and manipulation, are implemented at this
Tevel. A1l computers are interconnected using either multi-port memories
or a specially developed, high speed (10 Mbits/second) fiber optic

network.

Seventy-five man years of effort have been expended in developing the
Nova control system including high speed network communications, data
base management techniques, real time handlers, operator interfaces, and
systems and applications level software.

Why Ada? In the late 1970's, analyses of computer efforts in the United
Sfa%es Department of Defense (DOD) showed that over three billion dollars

per year were being expended on software (Fisher, 1978). The majority of
this software was used in imbedded real time control systems (e.g.,
aircraft controls). Issues of maintainability and a need to reduce

support costs were steering the DOD towards requiring high order
languages in all systems. However, the Tack of features and efficiency

in these languages led to many exceptions to the use of HOL's. Over
fifty percent of all real time imbedded software in DOD systems was being

written in assembly language. This resulted in continuous training
problems, logistics problems, and upgrade difficulties.

Consequently, the purpose of the DOD in initiating the Ada effort was to

develop a language for real time imbedded systems which would be used

exclusively on all DOD related projects. The fundamental objectives were:
(] Reduce the cost of software throughout its life cycle

(] Allow development of truly transportable software - both across
applications and hardware

0 Allow responsive, timely maintenance of long lived software
0 Support very high reliability needs

0 Increase readability of all software at the (possible) expense
of writability

0 Produce high efficiency code, comparable to well coded assembly
language.

The History and Current Status of Ada. The Ada language has been under
design and development for over eight years. The initial effort was to
determine the requirements of a HOL for embedded real-time control
systems, and whether existing languages or combinations of these
languages could meet thesé requirements. A series of documents with the
code names STRAWMAN, WOODENMAN, and TINMAN were subsequently issued and
reviewed by representatives of the academic community, industry, and
government. Beginning with STRAWMAN, each successive document became
more specific, precise, and complete in stating DOD's HOL design
criteria. In 1976, a group of reviewers evaluated existing languages
against TINMAN and determined that no existing languages would meet the
stated criteria. This committee recommended that a new language be
designed, and that it be based on either Algol-68, Pascal, or PL/I.

In 1977, four companies were given contracts to design languages to the
IRONMAN specification. Their submittals were given code names and
distributed widely for review:

Company Code
CII-Honeywell Green
Intermetrics Red
SRI Yellow
Softech Blue

A11 four companies had based their languages on Pascal. Red and Green
were selected as the final contenders. A new and final language
requirement document, STEELMAN, clarified and corrected inconsistencies
in IRONMAN. Red and Green revised and completed their designs against
STEELMAN. After extensive public review, Honeywell's Green was chosen.
Contracts for language implementation on Digital Equipment VAX and IBM
370 architectures were awarded. These compilers are expected to be
completed in the next twelve months.

With the widespread interest in Ada, additional Ada development efforts
around the world have been initiated. This includes a compiler by Intel
for the Intel 432, the recently announced ROLM compiler, an interpreter
at New York University, and several European, Canadian and Asian efforts.

Ada, however, is to be a tightly enforced standard. Softech, Inc. is
completing the Ada validation system which will be used to qualify all
compilers using the DOD registered trademark, "Ada". This eliminates the
tempting possibility of subsetting the language (to ease implementation)

while still referring to such implementations as "Ada".

In addition to the Ada language effort it was recognized that, to achieve
Ada's objective, the total programming environment must be considered.

It is important to provide the programmer with a standard and sufficient
set of tools, independent of the host support system specifics.
Therefore, a series of consecutive "environment specifications" including
PEBBLEMAN (1978) and subsequently STONEMAN (1980) were developed. At
least two major efforts are now underway to implement tools such as
editors, libraries, and commonly used run-time support libraries. This

work includes the Kennel Ada Programming Support Environment (KAPSE)
which presents a virtual host operating system interface to the compiler

and other tools. Changes in the actual hardware and operating system can
therefore be accommodated within the KAPSE, reducing the need for
recoding the support tools for new hosts.

Progress on the environments is hot as far advanced as the Ada language
itself, yet well designed environmental tools will be required if Ada is

to meet its fundamental design objectives.

The current schedule for Ada indicates that DOD compilers and
environments should be available in late 1983 and 1984. Mandating the
use of Ada in all new DOD embedded real-time applications is planned by

1990.

Ada Concerns. Despite the exhaustive design efforts and considerable
commitment to Ada's success, there are still concerns, and opposition to
Ada does exist (Ledgard, 1982, Hoare, 1981). The majority of the
concerns treat the two categories listed below:

] LANGUAGE COMPLEXITY, The Tanguage is too rich and complex,
detracting from its usefulness, reliability, and
maintainability. Subsets are highly desirable (though
specifically prohibited at this time). A result of this
complexity is that non-professional programmers may find Ada
too intimidating.

0 REAL-TIME RESPONSIVENESS. The lack of known storage
requirements at compile time and the possible influencing of
its high level task synchronization features may impact the
safe, reliable use of Ada. This applies specifically to-
real-time situations such as flight control. Overhead due to
run time checking of ranges or other constraints is also a

concern.

Until the actual implementations are available, we can only judge Ada by
the language definition and not run time performance. Based upon our
experience with Praxis, however, we will treat issues of language

complexity.

Major Features of Ada. Having summarized the motivation and status of
the Ada project, we now briefly review selected important features of the
language. Also present in the Praxis language, these features are
presented in order according to their impact on the Nova control system

development effort:

Extensive Compile and Run Time Checking - A1l manipulations
involving data, types, and other entities are checked for
correctness and legality. This includes the parameters used in
procedure calls. Run time checks include range checking of all

data values.

Declarations and User-Defined Data Types - The structured type
declarations familiar to Pascal users have been extended to
improve capability.. Ada (and Praxis) require that the types of
all data be declared. Types are strictly enforced and only

limited coercion of mixed data types is permitted.

Separate Compilation -~ Ada allows procedures, variables, types,
and collections thereof to be compiled separately as small
units, while maintaining strict compile-time type checking
across these units.

Self-Documenting - The length of identifier names allowed,
combined with good data structures and excellent control
statements, supports writing of self-documenting software. (It
is, of course, still possible to write inscrutable code if such

capabilities are not well utilized.)

Extended Control Structures. - Extensive control structures are
provided to clearly indicate operations being performed. Some
are redundant, (Praxis does not have the GOTO statement.)

Packages - Ada provides comprehensive methods of grouping
procedures, declarations, and collections of data into
separately compilable modules. Ada includes library support
for packages and generally improves upon Praxis' capabilities.

Exception Handling - Exception conditions (I/0 interrupts,
range errors, underflow) can and must be handled in programmer
defined high level code.

Data Abstraction - Type declarations for data and procedures
can be compiled separately from the code which uses or
comprises them. This unclutters the user interface and
prevents unauthorized changes to data or code.

Enumerated Data Types - Data types may be defined in which
values are limited to a 1ist of programmer defined alphanumeric

"names". For example, type color is limited to “values" RED
and BLUE.

'Interprocess Communication Constructs - The language provides

substantial support for synchronizing processes and
interlocking access to shared data.

Structured Access to Machine Features - Access to machine
features is defined and controlled within the language.
Frequent use of supporting assembly language programs is
unnecessary and discouraged.

Ada includes significant features which were not incorporated onto Praxis
due to difficulty of implementation or their limited usefulness. These

include:

o Generic Procedures - Procedures with identical names but
different parameter specifications can be utilized and
distinguished by the compiler. This increases the value and
flexibility of libraries of preprogrammed procedures.

0 I/0 - File, text and device oriented I/0 is defined as part of
the language and implemented in packages.

0 Multi-Tasking - This difficult to implement feature is a major
contribution of Ada. Specific constructs for the initiation
and control of parallel tasks within the language itself are

defined.

0 Standardized Programmer Support Environment - Ada will include
standardized tools such as editors, configuration manages, data
bases, and user libraries. This feature will also serve to
insulate Ada software and tools from changes in operating
system software and hardware.

;igu(es 3 and 4 show exampleé of procedures written in both Ada and
raxis.

Praxis - Motivation, History and Current Status. We stated at the onset
of the Nova Project that substantial savings in time and effort would
result if a powerful controls-oriented programming language were-
available. We had endured several years of dealing with older languages,
their restrictions, awkwardness, and inexactness. Extensive debugging
sessions often led to discovering a misspelled variable name or a misuse
of a variable type. Several different languages and operating system
environments had been used since no single product covered the breadth of
features needed in this large distributed system. This created typical
problems in software maintenance, making support and extension difficult.

Therefore, in January 1979 LLNL issued a contract to Bolt Beranek and
Newman (BBN), Inc. to design and to implement a Praxis language compiler
for Digital Equipment Corporation PDP-11 computers. The development of
Praxis originated from an initial study by BBN, funded by the U.S.
Defense Communications Agency (DCA), to determine the requirements of a
language for communications programming. With the clarification of the
Nova controls hardware architecture and schedule, BBN's work was expanded
to include the development of a VAX/VMS native-mode compiler,
documentation, additional language design, and a high-level input/output

package.

In March 1980 the preliminary PDP-11 compiler successfully passed two
critical milestones. The first milestone was that the compiler, which is
written in Praxis, compliled itself successfully on the PDP-11 systems,
proving that the bulk of compiler was correctly implemented.

The second milestone was the implementation of a Nova controls
application of the language, a ROM-based LSI-11 processor. A 2000-1ine
assembly-language, stepping motor control program was recoded in Praxis,
compiled, and burned into read-only memory (ROM). This demonstrated that
the language was indeed powerful enough to replace detailed assembly
language sequences and that the compiler correctly implemented the
controls-oriented features.

In December 1980 we took final delivery from BBN of the completed Praxis
compilers, support software, and documentation. The products were:

0 VAX/VMS compiler generating VAX code

0 VAX/VMS compiler generating PDP-11 code

0 PDP-11/RSX~11M compiler generating PDP-11 code and support
software and documentation :

0 RMS Input/Output package
0 Language Reference Manual (Evans, 1981) (300 pages)
0 Input/OQutput Manual
() Compiler Internals document
In addition we completed two in-house documents:
0 An Introduction to Praxis
0 Programming in Praxis

We have been using the Praxis language for control systems programming
since the Summer of 1980 with remarkable success and acceptance. More
than 300,000 Tines of operational Praxis code have been written.

The Praxis language is specifically within the state of the art of
language design. It was particularly designed for control and system
implementation needs. It is a comprehensive, strongly typed,
block-structured language in the tradition of Pascal, with much of the
power of the forthcoming Ada language. It supports the development of
systems composed of separately compiled modules, user-defined data types,
exception handling, detailed control mechanisms, and encapsulated data
and routines. Direct access to machine facilities, efficient bit
manipulation, and interlocked critical regions are provided within the

1anguage.

Since the control system environment differs in important ways from
application to application and machine to machine, Praxis has features to
handle these differences. High-level facilities that mask machine
dependencies and foster machine independence (portability) usually
prevent the use of exactly the programming capability needed for
real-time, control applications programming. However, Praxis is a
high-level language that has controlled access to machine dependencies.

Complex language features, such as Ada‘'s generic procedures, overloading
of operators, and parallel processes, have been intentionally left out.

We felt that these concepts were either not understood well enough to be
incorporated at this time, or that they need not be part of the language.

Summarizing, Praxis is an extremely powerful, modern programming language
that goes beyond Pascal and has been used for over two years. At this
time it would be difficult to prove or disprove any cost savings due to
the use of Praxis, but a ?reliminary version of the Nova control system
is now in use in the smaller scale version of Nova, Novette, and the
system operators are satisfied. The great majority of all of the
software for Novette was written in Praxis and the writers are

satisfied. Furthermore we have found no application where Praxis was not

sufficient causing some other language had to be used.

Experiences with the Praxis HOL. The following information on the actual
use of Praxis is based upon personal experience, formal interviews with
Nova project programmers, statistical analysis of the 300,000 1ines of
Praxis source code, and informal communication between all of the Praxis
users at LLNL. In presenting the use of these features, we contrast the
frequently used and popular ones with those that are impractical,
difficult to understand or seldom used. Areas where HOL's 1ike Praxis
(and Ada) are difficult to use or whose impact is not yet known, and
where additional needs remain are discussed.

Frequently Used Operations in Nova. Predictably, the integer and bit
ata declarations, and the more traditional flow control operations, were

the most frequently utilized statements. Note, however, that while
neither Praxis nor Ada contain true string operations, the number of
ASCII strings encountered within the Nova control system software was
surprisingly large. Approximately 19% of all source code lines contained
ASCII strings. A significant portion of these arise from debugging
messages in the code. However, a significant portion is also found in
software supporting man-machine interactions through operator consoles
and other peripheral devices. There should not be any more doubts
concerning the importance of string handling operations within control
systems. Ada's generic capabilities support the implementation of string
operations, and we urge that a standard emerge from the work on

environments.

Features and Characteristics Most Liked in Praxis. The availability of
Praxis’ extensive data structuring faciTities was welcomed
enthusiastically by our control system implementers. In retrospect, we
over utilized this feature and now are retreating. The occurrence of
complex uses of large central data structures in software products

actually detracts from maintainability.

The single most valuable characteristic of the Praxis language has been
the relative completeness with which the compiler can check that the code
represents the intent of the programmer. Our experience indicates that
once a program has successfully compiled, it will run as expected with
Tittle or no machine interactive debugging. '

10

The key features of the language that make this possible are compulsory
declarations, enumerations, and tightly enforced type checking. Separate
compilation of modules is also a practical requirement.

Large identifier names that are meaningful to the application were judged
to be very valuable. It is interesting that this single feature, which
is simply and easily implemented in any language, ranks near the top of
the Tist in value to the users. However, for those about to buy
programmer workstations, be aware that typical statements in these
languages are long. Identifiers in Praxis have a 32 character limit,
often used in interests of readability. With block indenting and
multi-level structure references, even 132 character wide terminals can
be Timiting. As a further (minor) comment, the standard eight character
wide tab spacing, used by several manufacturers, is too wide and awkward
to use with this style of language.

Features Found Impractical for Nova. Impractical features are those
which cost more to design, impTement or utilize than will be returned in
benefit. For example, the designers of Ada and Praxis have attempted to
create languages that totally replace the need for assembly language. At
least with Praxis, it has been proven to our satisfaction that this is
impractical. The effort to implement these features and educate users on
their methods and restrictions was, in retrospect, of little net

benefit. With the exception of one individual, in-1ine code is seldomly
used and has never been found to be essential.

Another example of an impractical effort is generating machine code
rather than intermediate macro assembly code. The Praxis compiler was
originally written to output assembly language statements which were then
assembled by a standard assembler. This provided an extremely valuable
debugging tool - the intermediate assembly language code - which was
appreciated by the users. The mysteries of just what the compilers did
with exutic source statements, and bugs related to the interrelationship
of Praxis code with its environment, were often resolved through close
scrutiny of the assembly language code produced by the compiler.
However, in the interest of improving overall compilation speed, the
Praxis compiler implementers eventually removed this feature from the
compiler that generated VAX code. Fortunately, it remains in the LSI-11
code generating version, where it is most useful.

Yet another possibly impractical, but enjoyed, feature of Praxis allowed
a carriage return to be a statement terminator instead of a semicolon.
This contributed to productivity and readability. However, it used some
rather complex rules to determine when end-of-1ine was actually
end-of-statement. As a result, it consumed a considerable amount of time
and effort in Praxis compiler design and implementation that may have
been better spent testing other features.

Aspects of Praxis and Ada Which Are Difficult to Understand. Ada and
Praxis are strongly typed Tanguages. Every use of every identifier is
checked for consistency with the original specification of its type.

This specification is often in another module (package). This introduces
a major complexity in organizing the location of type specifications and
in specifying the order in which modules may be compiled.

N

Frequently, adding a reference to an object used by other modules to a
module being modified causes established order of compiling modules to
fail. Often, large structural changes must be made to the location

(which module) of type definitions, leading to massive editing efforts.

It is often difficult to structure software to meet the requirements
introduced by separate compilation and still maintain the flexibility
required to easily adapt to changing application requirements. One user
has suggested automatic generation of an ordered 1ist of all modules
required to be compiled prior to compilation of a given module. One aim
of the Ada environment efforts is to treat this specific problem in an

automatic or semi-automatic manner.

Seldom Used Features of Praxis. During the design and initial
implementation efforts, substantial energies were devoted to theoretical
proofs and disproofs leading to the specification and implementation of
features. A few such features were included for the sake of elegance,
but were often difficult to implement. We found subsequently that such
features were often Teft unused.

While not particularly difficult to implement, one such feature is the
ability to combine source statements on a single line separated by
semicolons. Since Praxis source lines tend to be lengthy, due to long
identifier names and indentation conventions, there are few cases where
multiple statements on a single line are desirable. In fact, process
control programmers often prefer writing a series of vertically arranged
"steps". With the exception of one individual, only 0.6 percent of all
source lines contained multiple statements.

Features providing assembly level capabilities were often found to be
less useful in a higher level language. For example, the exclusive QR
operation, included in many languages, was used exactly three times in
the entire system. Another case is the clever SWAP operation where the
contents of two variables are exchanged. Often used in assembly level
programs in prior systems, SWAP has never been used in Nova.

More importantly, we note that redund&nt methods of advancing indices on
loops and expressing control structures are often not used. A single,
simple technique is often selected and employed exclusively.

Features Desired but Not Implemented. The Ada language was designed with
three overriding concerns; program reliability and maintenance; concern
for programming as a human activity; and efficiency. The need for
languages that promote reliability and simplify maintenance is well
established. Hence, emphasis was placed on program readability over

writeability (Morgan, 1983).

Concern for the human programmer was stressed during the design. But
what about the software manager? Praxis did little to assist us with
what is the remaining most difficult part of software, its management.
While we do not feel qualified to state all that is required, some

suggestions follow.

12

In a loosely organized process control system development effort, a set
of compiler controls is required to restrict the use of features which
conflict with long term objectives or are otherwise determined to be

undesirable in a particular application.

Also of use would be enforced entry of certain information, such as

author, project name, date and revision history, organization title and
copyright notice. Also desirable is statistical information on the use
of various features categorized by author and project as the experience
of a novice programmer grows. Many of these areas are being treated in

Ada environment.

Better debugging capabilities are needed for Praxis and planned for Ada.
In Nova, debug messages are commonly inserted at procedure entry and exit
points to show the state of parameters. A compiler should generate these
and other messages at designated points according to directives. Higher
speed compilation and 1inking with more aids to regenerating large
software products are aiso desired.

Finally, out of our interview process came a request for a simple
initialization operation which could be applied to any data structure.
Also requested was that all declared variables default to some known
condition. The ability to express the type of storage allocation allowed
on parameters to a procedure (for example, must be in I/0 space of
memory) is desirable. Users would like to see FORTRAN formatted 1/0
incorporated, but this is not surprising given that I/0 in Praxis was not

part of the language definition..

Statistical Survey of Features Use Within Praxis. Our Nova control
system effort provides a reasonable size sample set for examining the
actual use of features within a high order control system language.
Several hundred thousand lines of code were written by approximately
twenty-five people over a three year time period.

A statistical survey of the use of Praxis features within Nova control
system software, including the Praxis compiler, was performed. The
incidences of every reserved word and symbol within the language, user
defined symbols and types, sizes of modules and lines, and compiler
directives were measured. Also recorded was each use of general system
software packages. This data was correlated with several categories of
users. From these correlations, we determined that users often did not
use the very features which they had originally requested.

Clear dialects of usage have developed within small teams. This is taken
as evidence that even Praxis, which is sparse compared to Ada, has
redundant features. Following the lead of Barnes (Barnes, 1980) we
correlated the use of features with several ‘cultures' that seemed
apparent within the group of developers: Compiler-Writers,
Professionals, Amateurs and Novices.

Definition of the Programming Cultures. In our statistical surveys we
defined the programming cultures as:

13

Compiler writers - These are the professionals who specifically design
and write Tanguage compilers.

Professionals - The professional culture is concerned with writing
programs of a permanent nature. These programs are usually large. They
are written by teams of individuals whose profession is primarily the
design and writing of programs. Their programs should be adequately
documented and to accommodate maintenance over a several year lifetime.
Accordingly, it is essential that the language used be standard, stable
and reasonaBIy well known. Important characteristics are the need for
separate compilation, readability and compile time error detection.
Interactive use is not required. Examples of existing languages used by
this culture are FORTRAN, Pascal, COBOL, PL/I, CORAL 66, RTL/2 and CHILL.

Amateurs - The amateur culture is concerned with writing programs of a
less permanent nature. These programs are usually small and often
written by individuals whose primary profession is in a different field
such as accountancy, medicine, or chemical engineering. They use the
computer merely as a tool in the furtherance of their main goals. Their
programs are often used only a few times and consequently need little
maintenance and documentation. Important characteristics of such
languages are the need for ease of writing and general 'user
friendliness'; interactive use is inevitable. Examples of such languages
are BASIC, FORTH, APL, and the command language of many operating systems,

Novices - People in this category are just beginning to learn about

Tanguages and the application of computers. :
Table 2 Tists some overall statistics correlated with these cultures.

Table 2
Culture
Compiler
Writer Professional Amateur Novice Total
Number of individuals 4 8 9 7 28
Lines of actual code 73,062 109,197 137,043 5,026 324,328
Percentage of lines of
comment per line of code 26% 24% 35% 25% -
Assignments 9,173 11,493 20,426 596 41,688
Number of separate modules 882 661 809 58 2,410
Number of exported items 4,123 6,574 4,204 455 15,356
No. of identifier references 122,712 174,479 226,538 6,750 530,479

Within this summary data some interesting trends are evident. On a
percentage basis the amateurs document their code with comments
substantially more than the compiler writers and professional programmers
(35% versus 25%). The professionals wrote substantially fewer assignment
statements and had more module interface declarations, procedures, and
type statements. Apparently, they made powerful use of aggregate
assignments and procedure calls. The professionals tended surprisingly
to write larger modules with more complex interfaces. Amateurs more

14

frequently ventured into unusual features. Experience showed that this
caused them some difficulties.

Another statistic of note is the total of over 1/2 million references to
identifiers (variables, constants, procedures, functions) required to
control the Nova system. Over 4,000 user defined types were employed
(see "IS" in Table 2). Also note the difference in the use of OPTIONAL
(parameters to procedures and functions), INITIALLY (initial conditions),
and EXCEPTIONS by the various cultures.

Projections and Cautions Based on the Praxis Experience on Ada. Our
experience with Praxis on the Nova control system indicates that the
content and features of the Ada language per se are outstanding. We
perceive that the present implementation efforts may be getting ahead of
the overall Tanguage environmental considerations. Such environmental
features as improved compiler and linker speed, interactive capabilities,
ease of writing, and general 'user friendliness' should be emphasized.
In Nova, the singie greatest contribution to our programming style and
productivity has been Praxis combined with a screen oriented editor.
This reinforces the need to concentrate on providing good Ada
environments.

Despite our predictable startup problems with the brand new Praxis
language, all of the users reported satisfaction with the overall impact
of the language on their projects. Moreover, they intend to use the
language, or Ada if it is available, on their next project if possible.

Ada, and to a lesser extent Praxis, are languages rich in syntax and
features. There are a sufficient number of redundant features in Ada
that dialects will develop. The result in large systems can be that
portions of the system written by one team or individual will not be
easily understood by other teams or individuals. While sharing of such
dialect< can be a stimulant to learn, we urge the use of standards of
programming style. Such standards should be chosen to be sufficient to
1imit excessive proliferation of dialects in applications which will
require long term maintenance.

Conclusion. We feel that Ada, with good environmental standards, will
provide an intellectual stimulant to the advance of professionalism in
software development for distributed computer control systems. However,
users who plan to use Ada should note that the language by itself will
not ensure better, more maintainable control systems. Nor will first
time use of Ada on small to medium size systems aid in achieving their
timely implementation. The impact of factors such as compiler speed, a
rich syntax, strong typing, and separate compilation on initial
programmer productivity should be anticipated and factored into project

plans.

We end with a positive note: In the Praxis and we expect also in Ada,
programs which finally compile successfully often execute successfully
the first time. This single characteristic may have a significant
jmpact, in the long term, over the way programs are developed and future
languages are designed. Programmers may no longer need to spend most of

15

their development time on the actual control systems. The availability
of good, centralized host development facilities will be required. With
the use of centralized hosts, the natural communication resulting from
the closer proximity of the developers should result in better quality
computer control systems in distributed applications such as Nova.

Acknowledgment. We wish to acknowledge the assertiveness and assistance

of James Greenwood (former LLNL employee) without whose drive Praxis
would not have existed. Also, in particular, Robert Morgan and Art Evans

(formally of BBN) for excellence in the compilation, design and
implementation of Praxis.

And finally, we thank the following individuals in particular, whose
coding styles were analyzed statistically, and who provided the formal
and informal material for this paper.

G. Aune C. Humphreys J. Severyn
D. Benzel B. Johnson T. Sherman
R. Burris J. Krammen J. Smart

A. DeGroot D. Kroepf1 K. Snyder

J. Duffy D. McGuigan 6. Suski

J. Greenwood D. Myer§ ' P. VanArsdall
J. Hill R. Reed J. Wilkerson
F. Holloway W. Schaefer

2
o

i

=

Fiaure 1

The computer system consists of over 50
computers and associated hardware

.. et

e e e B 6 R

el

[

TIEIIENEIL

§

R
4

1

T3 TITITE

| e oo

INERE g a,get dmgncstm
- g!%ﬂ
W

Fioure 2

/7
/7 Example of a Complex Number Package in Praxis
1/
module COMPLEX_LIB
use MATH LIB

export COMPLEX, COMPLEX_SUM,
COMPLEX_PRODUCT, MAGNITUDE

declare
COMPLEX is structure
REAL_PART s real
IMAGINARY PART : real
endstructure
enddeclare

function COMPLEX SUM (X, Y: in ref COMPLEX)
returns SUM : COMPLEX
SUM.REAL_PART += X.REAL_PART + Y.REAL PART

SUM. IMAGINAn{_PART tz X,IMAGINARY_PART + Y.IMAGINARY PART

endfunction {COMPLEX SUM} .
function MAGNITUDE { X : in val COMPLEX)
returns R : real initially
FSQRT (X.REAL_PART"z + X.IHAGIIAR!_PAR‘I“Z)
endfunction {MAGNITUDE}
endmodule {COMPLEX LIB} -
/7
// use of above
7/
Main Module TEST

use COMPLEX LIB

declare
X : COMPLEX
Y = COMPLEX (REAL_PART: 1.0,
IMAGINARY_PART: 2.0)
z : COMPLEX initially Y
R ; real
enddeclare

X = COMPLEX SUM (Y, Z)
R t= MAGNITUDE (X)

endmodule;

Figure 3. Comparative Example
of Praxis and Ada

-— Example of a Complex Number Package in Ada

package COMPLEX LIB is

type COMPLEX is record
REAL_PART : real;
IMAGINARY PART : real;
end record;

COMPLEX) return COMPLEX

funotion ™" (X, Y:
(X : COMPLEX) return COMPLEX

funotion ABS

end COMPLEX LIB;

And NOW the package body, that is, the implementation
of the .specification.

with MATH LIB; -- a paokage .containing FSQRT function
package body COMPLEX LIB is
begin

function "»" (X, Y: COMPLEX) return COMPLEX is
= an overloaded operator
begin

return (X,REAL_PART + Y.REAL_PART,

X.IMAGINARY PART + Y, IMAGINARY PART);
end “ev; -

funotion MAGNITUDE (X : CONPLEX) return real is
begin

return FSQRT(X, REAL®%2 4+ X IMAGINARYS#2);
end MAGNITUDE;

end COMPLEX LIB;

== use of same in a program fragment

declare
use COMPLEX LIB;
X s COMPLEX;
b 4 : constant COMPLEX := (1.0, 2,0);
A ¢ COMPLEX := Y
R : REAL;
begin
X :=Y +#2Z; =— use complex addition

HI 4
R = MAGNITUDE(X):

'
7/
/"

Message parsing in Praxis

module MESSAGE

export NODE, MSG_TYPE, MSG, SEND_MSG, GET_MSG
declare
NODE is [NORTH, SOUTH, EAST, WEST 1]
NSG_TYPE is [DATA_MSG, REPLY_MSG, ERROR_MSG, ABORT_MSG)

MSG 1s structure

TYPE_OF_MSG : MSG_TYPE initially DATA_MSG
SOURCE_NODE : NODE
DESTINATION_NODE : NODE

select TYPE_OF_MSG from
oase DATA_MSG:
DATA_VALUE : real
case REPLY_MSG:
REPLY : MSG_TYPE
case ERROR_MSG:
STATUS_CODE : integer
case ABORT_MSG:
RE_INIT FLAG : boolean

endselect
endstruocture
HEAP_SIZE = 100
MSG_MEAP : statio array [1..HEAP_SIZE Jof MSG
enddeclare

procedure SEND_MSG(M: MSG, N: MODE)
//send M to node N

" endprocedure

function GET_MSG (N: NODE) returns M: MSG
// get next MSG from node N

endfunction

endmodule {MESSAGE}

Fioure 4: Comparative examnle
of Praxis and Ada

— Message parsing in Ada

package message is
type NODE is (NORTH, SOUTH, EAST, WEST);

type MSG_TYPE is (DATA_MSG, REPLY_MSG,
ERROR_MSG, ABORT MSG);

type MSG is record

TYPE_OF_MSG : MSG_TYPE := DATA_MSG;
SOURCE_NODE : NODE;
DESTINATION_NODE : NODE;

case TYPE_OF_MSG is
when DATA_MSG =>
DATA_VALUE : real;
when REPLY_MSG =>
REPLY : MSG_TYPE;
when ERROR_MSG =>
STATUS_CODE t integer;
when ABORT_MSG =>

RE_INIT FLAG : boolean;
end case;
end record;

procedure SEND MSG(M: MSG, N: NODE);
- send M to node N

function GET_MSG (N: NODE) return MSG:
-— get next MSG from node N

end MESSAGE;

— And Now the pabkage body

package bndy MESSAGE 1s

HEAP_SIZE : constant 100;
MSG HEAP : array (1,.HEAP_SIZE) of MSG;

begin

procedure SEND_MSG(M: MSG, N: NODE) is
-- send M to node N
begin

end SEND_MSG;

funoction GET_MSG (N: NODE) return MSG is

— get next MSG from node N
begin

end GET_MSG;
end MESSAGE;

1/

/7 Use of same in a program (Pravis® — Use of same in a program fragment /Ad2}
17/ -—
main module TEST2 declare
use MESSAGE use MESSAGE;
use TEXTIO // contains rudamentary 1/o use SIMPLEST;: -- gontains rudamentary i/o¢
declare IN_MSG : MSGs
IN_MSG : MSG ABORT FLAG : boolean := false;
ABORT_FLAG ¢ boolean initially false COUNT : integer := 0}
COUNT $ integer initially O
enddeclare begin

while not ABORT FLAG do while not ABORT FLAG loop;

IN_MSG := GET_MSG (SOUTH) IN M3G := GET_MSG (SOUTH);

select IN_MSG.TYPE_OF_MSG from oase IN_MSG.TYPE OF_MSG is

' when DATA_MSG =>
oase DAl _MSG: put_real (IN_MSG.DATA_VALUE);
OUT_REAL(tty,IN MSG,DATA_VALUE)
when ABORT_MSG =>
case ABORT_MSG: . ABORT_FLAG := IN_MSG.RE_INIT_FLAG ;
ABORT_FLAG := IN_MSG.RE_INIT_FLAG
; . : when ERROR_MSG =>
case ERROR_MSG: put_1integer (IN_MSG.STATUS_CODE);
out_integer (tty,IN MSG,.STATUS_CODE) end case;
endselact

=— now send a response

// Now send a response SEND_MSG ((REPLY_MSG, IN_MSG.TYPE OF MSG),

SOUTH);

SEND_MSG (MSG (TYPE_OF_MSG: REPLY_ MSG, .)

REPLY : IN_MSG.TYPE OF MSG), COUNT 3= COUNT + 1;
SOUTH) .

. end loop;
COUNT ®a + 1 ond;
endwhile ’

endmodule

Fioure 4 continued

REFERENCES

Barnes, J. G. P., "An Overview of Ada", Software-Practice and Experience,
pp. 851-887, 1980.

Carlson, W. E., “Ada: A Promising Beginning", Computer, 1978.

Evans, A., Jr., C. R. Morgan, J. R. Greenwood, M. C. Zarnstorff,
G. J. Williams, E. A. Killian, J. H. Walker, and J. M. Duffy, Praxis

Language Reference Manual, University of California UCRL-15331
(lggl), Contract 3634909.

Evans, A., Jr., A Comparison of Programming Languages: ADA, PRAXIS
BASCAL, . TCRL T5376, (198 T] oo 4 —+

Fisher, D. A., "DOD's Common Programming Language Effort", Computer, 1978,

Hoare, C. A. R., "The Emperor's 01d Clothes", Communications of the ACM,
pp. 75-83, 1981.

Ichbiah, J. D., J. C. Heliard, 0. Roubine, J. G. P. Barnes,
B. Krieg-brueckner, and B. A. Wichmann, Rationale for the Design of

the ADA Programming Language, ACM Sigplan Notices, V. 14, No. b,
June 1979, Eart 8.

Ledgard, H. F., and A. Singer, "Scaling Down Ada (Or Towards A Standard
Ada Subset), Communications of the ACM, pp. 121-125, 1982.

Manes, K. R., et al, Novette, A Short Wavelength Laser-Target Interaction

System, UCRL 88120, prepared for submission to the Sixth
In%ernationa] Workshop on Laser Interaction & Related Plasma

Phenomena (1982).

Morgan, C. R., "ADA: Its Motivation, History, Capabilities, Implementa-
tion", Intermetrics Inc. Lecture Notes, 1983.

Preliminary ADA Reference Manual, ACM Sigplan Notices, V. 14, No. 6, June
1979, Part A.

Saib, S. H., and R. E. Fritz, "The ADA Programming Language: A Tutorial”,
IEEE Computer Society Press, IEEE Catalog EHO 202-2 ?1983).

Simmons, W. W., et al, Nova Laser Fusion Facility: Design, Engineering,
and Assembly Overview, UCRL-8870, prepared for submission to the
Journal of Nuclear Technology/Fusion (1982).

Suski, G. J., and F. W. Holloway, "Development of a Control-System
Implementation Language (Praxis)", Laser Program Annual Report,
Lawrence Livermore Laboratory, UCRL-50021-79, pp. 2-106.

Suski, G. J., and F. W. Holloway, "The Evolution of a Large Laser Control
System - from Shiva to Nova”, IEEE Circuits and Systems, Vol. 1, No.
3, Sept. 1979 and cover photo.

Suski, G. J., J. M. Duffy, D. G. Gritton, F. W. Holloway, J. E. Krammen,
R. G. Ozarski, J. R. Severyn, and P. J. VanArsdall, The Nova Control

System - Goals, Architecture, and System Design, University of
CaTifornia UCRL<B68Z7 (1982).

